SAS6-like protein in Plasmodium indicates that conoid-associated apical complex proteins persist in invasive stages within the mosquito vector
نویسندگان
چکیده
The SAS6-like (SAS6L) protein, a truncated paralogue of the ubiquitous basal body/centriole protein SAS6, has been characterised recently as a flagellum protein in trypanosomatids, but associated with the conoid in apicomplexan Toxoplasma. The conoid has been suggested to derive from flagella parts, but is thought to have been lost from some apicomplexans including the malaria-causing genus Plasmodium. Presence of SAS6L in Plasmodium, therefore, suggested a possible role in flagella assembly in male gametes, the only flagellated stage. Here, we have studied the expression and role of SAS6L throughout the Plasmodium life cycle using the rodent malaria model P. berghei. Contrary to a hypothesised role in flagella, SAS6L was absent during gamete flagellum formation. Instead, SAS6L was restricted to the apical complex in ookinetes and sporozoites, the extracellular invasive stages that develop within the mosquito vector. In these stages SAS6L forms an apical ring, as we show is also the case in Toxoplasma tachyzoites. The SAS6L ring was not apparent in blood-stage invasive merozoites, indicating that the apical complex is differentiated between the different invasive forms. Overall this study indicates that a conoid-associated apical complex protein and ring structure is persistent in Plasmodium in a stage-specific manner.
منابع مشابه
Two Plasmodium Rhomboid Proteases Preferentially Cleave Different Adhesins Implicated in All Invasive Stages of Malaria
Invasion of host cells by the malaria pathogen Plasmodium relies on parasite transmembrane adhesins that engage host-cell receptors. Adhesins must be released by cleavage before the parasite can enter the cell, but the processing enzymes have remained elusive. Recent work indicates that the Toxoplasma rhomboid intramembrane protease TgROM5 catalyzes this essential cleavage. However, Plasmodium ...
متن کاملATG8 localization in apicomplexan parasites
Macroautophagy (hereafter referred to as autophagy) is a major intracellular degradation system that, in eukaryotes, is mediated by a special organelle, the autophagosome. Upon autophagy induction, small pieces of the cytoplasm are enclosed by phagophores, which mature into autophagosomes. Then, completed autophagosomes fuse with the lysosome, and the cytoplasm-derived materials inside the auto...
متن کاملInduction of an acrosomal process in Toxoplasma gondii: visualization of actin filaments in a protozoan parasite.
The invasive stages of Toxoplasma gondii, an Apicomplexan parasite, actively invade their host cells in an actin-dependent way. However, despite containing biochemically significant amounts of actin, actin filaments have never been observed in these parasites. Jasplakinolide, a membrane-permeable actin-polymerizing and filament-stabilizing drug, induced the polymerization of actin filaments at ...
متن کاملA family of chimeric erythrocyte binding proteins of malaria parasites (Plasmodium bergheiyPlasmodium yoelii yoeliiyapical membrane antigen 1yrhoptryymerozoite)
Proteins sequestered within organelles of the apical complex of malaria merozoites are involved in erythrocyte invasion, but few of these proteins and their interaction with the host erythrocyte have been characterized. In this report we describe MAEBL, a family of erythrocyte binding proteins identified in the rodent malaria parasites Plasmodium yoelii yoelii and Plasmodium berghei. MAEBL has ...
متن کاملStructure and Expression of an Adhesive Protein–like Molecule of Mosquito Invasive-stage Malarial Parasite
Invasion of the malarial parasite into a vector mosquito begins when the motile ookinete transverses the gut epithelium. Adhesive proteins that may mediate this invasive process have not been identified to date. We found that a molecule with an adhesive protein-like structure was expressed in the ookinete of Plasmodium berghei. This protein is structurally homologous to circumsporozoite protein...
متن کامل